Learning with Graphical Models

نویسنده

  • Sunita Sarawagi
چکیده

Graphical models provide a powerful framework for probabilistic modelling and reasoning. Although theory behind learning and inference is well understood, most practical applications require approximation to known algorithms. We review learning of thin junction trees–a class of graphical models that permits efficient inference. We discuss particular cases in clique graphs where exact inference is possible in polynomial time and some special cases where good approximation guarantees can be given. We also point out the drawbacks of learning with approximate inference. Finally, a practical application of probabilistic generative model for learning visual attributes from images is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure Learning of Mixed Graphical Models

We consider the problem of learning the structure of a pairwise graphical model over continuous and discrete variables. We present a new pairwise model for graphical models with both continuous and discrete variables that is amenable to structure learning. In previous work, authors have considered structure learning of Gaussian graphical models and structure learning of discrete models. Our app...

متن کامل

Graphical Model Structure Learning with 1-Regularization

This work looks at fitting probabilistic graphical models to data when the structure is not known. The main tool to do this is `1-regularization and the more general group `1-regularization. We describe limited-memory quasi-Newton methods to solve optimization problems with these types of regularizers, and we examine learning directed acyclic graphical models with `1-regularization, learning un...

متن کامل

A Brief Introduction to Graphical Models and How to Learn Them from Data

Graphical Models: Core Ideas and Notions A Simple Example: How does it work in principle? Conditional Independence Graphs conditional independence and the graphoid axioms separation in (directed and undirected) graphs decomposition/factorization of distributions Evidence Propagation in Graphical Models Building Graphical Models Learning Graphical Models from Data quantitative (parameter) and qu...

متن کامل

Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey

Probabilistic graphical models combine the graph theory and probability theory to give a multivariate statistical modeling. They provide a unified description of uncertainty using probability and complexity using the graphical model. Especially, graphical models provide the following several useful properties: - Graphical models provide a simple and intuitive interpretation of the structures of...

متن کامل

Learning with Joint Inference and Latent Linguistic Structure in Graphical Models

LEARNING WITH JOINT INFERENCE AND LATENT LINGUISTIC STRUCTURE IN GRAPHICAL MODELS

متن کامل

Hybrid Graphical Models and Neural Networks

We first look at a high-level comparison between deep learning and standard machine learning techniques (like graphical models). The empirical goal in deep learning is usually that of classification or feature learning, whereas in graphical models we are often interested in transfer learning and latent variable inference. The main learning algorithm in deep learning is back-propagation whereas ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008